2009年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2009

学科試験 問題

EXAMINATION QUESTIONS

(専修留学生)

SPECIAL TRAINING COLLEGE STUDENTS

数 学

MATHEMATICS

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

MATHEMATICS	Nationality	No.
	Name	(Please print full name, underlining family name)

1 Fill in the following blanks with the correct answers.

(1)
$$(-2x^2y)^3 \div x^5y \div (-2x^2y^2) =$$

(2)
$$\frac{\sqrt{5}}{\sqrt{3}+1} - \sqrt{\frac{30}{8}} + \frac{\sqrt{45}}{2} = \boxed{ }$$

(3) When
$$\frac{a}{x+1} - \frac{b}{2x+3} = \frac{x+4}{2x^2+5x+3}$$
 is an identical equation,

$$a = \boxed{1}$$
 and $b = \boxed{2}$

(4) There are four continuous odd numbers. When the total is 224,

the largest odd number is

(5) The largest integer x that satisfies the inequality $8^x < \frac{1}{4}$

The number of integers x that satisfy the inequalities $2 < \log_x 45 < 3$

(6) When one of the solutions of equation $x^3 + ax^2 + x + 1 = 0$ is x = 1,

 $a = \boxed{1}$ and other solutions are $x = \boxed{2}$

(7) Under $90^{\circ} \le \theta \le 180^{\circ}$, when $\cos \theta = -\frac{1}{2}$, then $\theta = \boxed{\bigcirc}$

(8)	There are five numbers; 1, 2, 3, 4, 5.
	How many three-digit integers can be made using three different numbers?
	The answer is ① . Among them, there are ②
	integers which are larger than 400.
(9)	Let vector $\vec{a} = (2, 3)$ and $\vec{b} = (-1, 4)$. When $\vec{x} - \vec{a} = \vec{b} - \vec{x}$, then
	$ec{x}=(egin{array}{ c c c c c c c c c c c c c c c c c c c$
(10)	Let $f(x) = -x^3 + 6x^2 - 9x + 1$.
(i)	The derivative $f'(x) = \begin{bmatrix} & & & & & & & & & & & & & & & & & \\ &$
(ii)	Under $0 \le x \le 3$, the minimum value of $f(x)$ is
2 Th	here is a parabola A: $y = x^2 - 4x - 5$.
(1)	The coordinate of the vertex of the parabola A is (
	\bigcirc), and the x-coordinate of the intersection of the parabola
I	A and the x -axis is 3
(2)	The equation of the parabola which moved the parabola A symmetrically
V	with the origin is $y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
(3) 1	When a straight line B: $y = 2x + k$ touches the parabola A,
k	e = ① , and then the area of the portion which is surrounded
b	by the parabola A, the straight line B, and the y-axis is 2

3 Choose equations showing the graphs which move the following graphs symmetrically with the y-axis, and choose the answers from those numbered from ① to ⑤.

①
$$y = \sin x$$

②
$$y = \cos x$$

$$y = [-x(x+1)]$$

$$y = -x | x + 1$$

①
$$y = |-x(x+1)|$$
 8 $y = -x|x+1|$ 9 $y = |-x|(x+1)$

①
$$x^2 + y^2 + 2x = 0$$
 ① $x^2 + y^2 - 2x = 0$ ② $x^2 + y^2 - 2y = 0$